– Natacha Go –natacha.go@laposte.net

NEUTRALISING ANTIBODIES PREVENT PRRSV VIREMIA REBOUND: EVIDENCE FROM A DATA-SUPPORTED MODEL

PhD seminar, 10th April 2017

In collaboration with

Suzanne Touzeau, ISA, INRA & BIOCORE, Inria, Sophia Antipolis, France Catherine Belloc, BioEpAR, Oniris & INRA, Nantes, France Andrea Wilson, Div. Genetics and Genomics, Roslin Institute, Edinburgh, Scotland

Context

Porcine Reproductive and Respiratory Syndrome virus (PRRSv):

- Targets the porcine antigen presenting cells (APC)
 - Wide variability in virulence & susceptibility
- Numerous vaccines, but only partially protective
- ⇒ Need to better understand the immune response

Viral titer rebounds:

- Mechanisms unclear (immune response, viral mutation, re-exposure over infection)
- Issue for the infection control (vaccination, genetic selection, population dynamics)

⇒ What immune mechanisms can cause rebounds?

Linking immune response & infection dynamics

Contrasted immune reponses can result in similar infection dynamics:

- Fragmented & partial view from the experimental studies
- High variability & complex system
 - → ORIGINAL MODEL: Integrative view of the within-host dynamics

(1) initiation of infection & immune response

(2) virus-immune response interactions

(3) immune response activation & regulations

Model - overview

Integrative and detailed view of the within-host dynamics

- evolution over time of PRRSv, innate and adaptive components
- deterministic system of 19 ODE involving 50 parameters
- mechanisms at between-cell scale, variability \sim parameter values

Model - equations

$$\dot{\mathbf{V}} = + \underbrace{E(t)}_{\text{exposure}}$$

$$- \underbrace{\eta_T \, \mathbf{V} \, (\mathsf{APC}_n + \mathsf{APC}_m) \, \kappa^-() \, [1 + \kappa^+()]}_{\text{phagocytosis}}$$

$$- \underbrace{\beta_T \, \mathbf{V} \, (\mathsf{APC}_m + \mathsf{APC}_n) \, \kappa^-() \, [1 + \kappa^+()]}_{\text{infection}}$$

$$+ \underbrace{e_T \, \mathsf{APC}_i \, \kappa^-()}_{\text{excretion}}$$

$$- \underbrace{\mu_V^{\text{ad}}_V \, \mathbf{V}_{\text{lg}}}_{\text{neutralisation}}$$

$$- \underbrace{\mu_V^{\text{nat}}_V \, \mathbf{V}}_{\text{natural decay}}$$

NTRODUCTION MODEL RESULTS CONCLUSION

What prevents rebounds?

Data. 300 pigs (genomic variability), NVSL strain (high virulence)

Method.

- (1) Model fitting
- (2) Identify the underlying mechanisms (ex. of antibodies)

Data.

Method.

(1) Model fitting

- 1. Selection of parameters: linked to between-host variability (14/50)
- 2. Check if the model can generate the data
- 3. Fitting method. 600 times the fitting process / profile:

(2) Identify the underlying mechanisms (ex. of antibodies)

NTRODUCTION MODEL RESULTS CONCLUSION

What prevents rebounds?

Data.

Method.

(1) Model fitting

(2) Identify the underlying mechanisms (ex. of antibodies)

Data.

Method.

- (1) Model fitting
- (2) Identify the underlying mechanisms (ex. of antibodies)

(1) Rebounds due to a lack of antibodies synthesis

(2) Lower Ig titer despite similar synthesis !?!?!

- (3) Rebounders need more neutralising antibodies !!!
- \rightarrow strength of neutralisation determines infection profiles?

Influence of pomoting / inhibiting neutralisation efficiency on profile

Method: vary μ_V^{ad}			Results: % of profile inversion		
levels	uniphasic	biphasic	levels	uni \rightarrow bi	<mark>bi</mark> → uni
L ₁ ↓ L ₆	×0.1 ↓ ×0.001	×10 ↓ ×1000	L ₁ ↓ L ₆	0	85

strength of neutralisation do not determines infection profile ... BUT ...

high neutralisation can prevent rebounds!

Conclusion

Strengths:

- Model: can reproduce the variability within and between PRRSv profiles
- Approach: powerfull to identify underlying mechanisms
 Expe.: only dynamics → expensive & partial view
- Results: new insights to explain PRRSv within-host dynamics
- ightarrow prospects for infection control (vaccination & host genetic selection)

Limits:

- Only fitted on viral titer (1 model variable / 19)
- No validation of fixed parameters & ranges

Prospects:

- Model simplification (Stefano's method)
- Exploration of other hypotheses (viral mutation, re-exposure)

Thank you!

