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Context and Objective

- Mathematical models of biological systems of high dimension

- Dynamics of large models are difficult to analyze:
* Which regulatory mechanisms are important for the system dynamics?

* Do they always play a role during the dynamics?

- Need to develop mathematical methods to answer these questions

*  Simplify the mathematical structure of the model

* Study the variation of activity of the remaining processes during the dynamics

- Applied on Ordinary Differential Equation Systems

Values of
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are known

-An example for today:
CIRCADIAN CLOCK




Circadian Clock

It allows the organisms to coordinate their physiological behavior with
daily and seasonal changes in the day-night cycle (biological clock)
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Circadian Clock

It allows the organisms to coordinate their physiological behavior with
daily and seasonal changes in the day-night cycle (biological clock)

Model for circadian oscillations in Drosophila involving negative regulation of gene expression
by PER and TIM gene

Drosophila melanogaster
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Circadian Clock

Case of 12 hours of light — 12 hours of dark
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The Model
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Ideas

Simulate the different processes for each ODE
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= Second phosphorylation (j=1)
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Ideas

Associate a dynamic relative weight for each process
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PROCESS WEIGHTS Waj
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First step

Show how important processes evolve over time and when they can
be considered “active”

Processes 0 t t2 t2 4 t5 te t7 t8 9 t10

Phosphorylated Timeless Protein

First Phosphorylation

First De-Phosphorylation

Second Phosphorylation

Second De-Phosphorylation

Linear Timeless Period degradation

Double Phosphorylated Timeless Protein
Second Phosphorylation

Second De-Phosphorylation

Formation of the Complex

Splitting of the Complex

Double Phosphorylated Timeless degradation
Linear Double Phosphorylated Timeless degradation

Complex

Formation of the Complex

Splitting of the Complex

Shift in the Nucleus

Shift out the Mucleus

Linear Complex degradation
Muclear Complex

Shift in the Mucleus

Shift out the Nucleus

Linear Muclear Complex degradation
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First step

Simplify model by eliminating processes that are always negligible
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First step

Simplify model by eliminating processes that are always negligible
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Second step

Create a “based-event” grid based on switching times and reduce it
using clustering technique

Whitin-Cluster Sum of Squares
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Second step

Create a chain of sub-models based on compacted time windows

From 0 to 1.96 h and from 17.8 to 24 h From 1.96 hto 17.8 h

| Variable | G. Rel. Err. S1 (%) | | Variable | G. Rel. Err. 82 (%) |
Period mRNA 13.63 Period mRNA 7.70
Total Period Protein 1.61 Total Period Protein 7.06
Timeless mRNA 0.05 Timeless mRNA 5.96
Total Timeless Protein 2.64 Total Timeless Protein 10.96
Complex 4.74 Complex 3.97
Nuclear Complex 5.36 Nuclear Complex 5.85




First step

Simplify model by eliminating processes that are always negligible

Total PER Protein
Total TIM Protein
Per mRNA
Tim mRNA

o

cn

Concentrations (nM)
L =

M




NIGHT TIME
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Conclusion

-We developed a method to analyze the role of regulatory mechanisms in the system dynamics
where we gained knowledge about which and when mechanisms are at work

-We created a simpler model in which negligible mechanisms are not included and we
decompose it into a succession of sub-models containing the core mechanisms

-PPA is a simple-to-use method, which constitutes an additional and useful tool for
analyzing the complex dynamical behavior of biological systems.

Current/Future steps

- We used global relative errors to assess the quality of the model reduction and apply global
sensitivity analysis to test the influence of model parameters on the errors.

-We studied the effect of initial values on the outcome of the reduced models and we
studied the transitions between different space regions

- We are studying a refinement of PPA by considering three different levels of activities
(inactive, active, fully active), defined by two different thresholds in order to improve the
quality of model analysis and reduction.

-We are studying how to apply PPA on the full coupled system of equations instead of
working on each equation separately: this would help to analyze activities or inactivities of
processes shared by several equations.




Applied on...

Drosophila circadian Rhythms and cellular signhal models

S. Casagranda, D. Ropers, J.-L. Gouzé.
Model reduction and process analysis of biological models,
in: Control and Automation (MED), 2015 23rd Mediterranean Conference on, IEEE, 2015, pp. 1132-1139.

Simple Gene Expression model

S. Casagranda, J.-L. Gouzé,
Principal Process Analysis and reduction of biological models with order of magnitude,

in: The 20th IFAC world congress, 2017-accepted.
Mammalian circadian clock model

S. Casagranda, S.Touzeau, D.Rophers, J.-L. Gouzé
Principal Process Analysis of biological models,
Journal of Theroretical Biology, 2017-submitted

Toxicological model

S. Casagranda, Frédéric Dayan, , J.-L. Gouzé, David Rouquié (Bayer CropScience)
Principal Process Analysis applied to a model of endocrine toxicity induced by Fluopyram

Ongoing Paper

H. Pagel, C. Poll, J. Ingwersen, E. Kandeler, T. Streck,
Modeling coupled pesticide degradation and organic matter turnover: From gene abundance to

process rates, Soil Biology and Biochemistry 103 (2016) 349-364.
Fed- Batch cultures model

C. Robles-Rodriguez, C. Bideaux, S. Guillouet, N. Gorret, G. Roux, 490 C. Molina-Jouve, C. Aceves-Lara,
Multi-objective particle swarm optimization (mopso) of lipid accumulation in fed-batch cultures, in:
Control and Automation (MED), 2016 24th Mediterranean Conference on, IEEE, 2016, pp. 979-984.
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Current step

-We applied Parameter Sensitivity Analysis to sub-models to test their

robustness
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Process Analysis inside a rectangle

-Study effect of initial values on the outcome of reduced models
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Possible transition between domains
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Gene expression model

mRNA process weights
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Gene expression model

mRNA process weight
=——=hasal activity
=——mRMNA transcription
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Gene expression model

mRNA process weight
=—hasal activity
=——=mRMNA transcription
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Gene expression model
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