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Neuron network functioning
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Biophysical Models
Basic cellular processes :

Pathways mediating functional synaptic
plasticity :

Too complex
⇒
Phenomenological models
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Main idea of STDP

Hebb’s law (1949) :

”Neurons that fire together , wire together .”[?]

Spiking-Time Dependent Plasticity (STDP)
[Bi and Poo, 1998]
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Phenomenological STDP models

Simplify biophysical models

Neuron model

Plasticity model

Neuron network

Simulations
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Plasticity rule

STDP learning rule

∆w = F+(w)G (∆t+)− F−(w)G (∆t−)

STDP experimental curve :

[Bi and Poo, 1998]

STDP deterministic curve (G) :

[Izhikevich and Desai, 2003]
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Simulations

[Clopath et al., 2009]
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Objectives

Rich enough to reproduce biological phenomena

Simple enough to be analysed mathematically

Take into account time scales differences

Adapted to simulation of not too small networks (10 000
neurons)

Observe global properties of the network
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Individual neuron model

Neurons are either at rest(0) or
spiking(1).

Wt ∈ RN × RN synaptic weights
matrix.

Vt ∈ {0, 1}N neuron system state.

Inhomogeneous jump rates :

0
α′i (Wt ,Vt )



β

1

S : R 7→ R+
∗ bounded, positive and

nondecreasing, αm > 0 :

α′i (Wt ,Vt) = S

(
N∑
i=1

W ij
t V j

t

)
+ αm

System with 2 neurons
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Plasticity rule

Jump of ∆w = cste

If the neuron i spikes at t−, ∀j 6= i :

if s jt < δ then wij + ∆w with probability p+(s jt ) = 1s jt<δA+e
− s

j
t

τ+ ;

if s jt < δ then wji −∆w with probability p−(s jt ) = 1s jt<δA−e
− s

j
t

τ− .

STDP curve :

[Izhikevich and Desai, 2003]
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Markov Process (Wt , St ,Vt)t>0 with (W0, S0,V0) = (w0, s0, v0) and :

Wt ∈ RN × RN synaptic weight matrix ;

St = (S1
t , ..., S

N
t ) ∈ RN inter-arrival time between spikes ;

Vt ∈ {0, 1}N neuron system state.

State space : E = (RN × RN)× RN × {0, 1}N
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Gi =



w + ∆w





0 . . . 0
...

0 . . . 0
~γ i

0 . . . 0
...

0 . . . 0


︸ ︷︷ ︸

N×N matrix

+



0 . . . 0 0 . . . 0
...

...
...

...

...
... ~ζ i

...
...

...
...

...
...

0 . . . 0 0 . . . 0




, (~γ i , ~ζ i ) ∈ F i


F i =

(~γ i , ~ζ i ), ~γ i = (γ i
1, ..., γ

i
N), ~ζ i =

ζ
i
1
...
ζ iN

 , γ i
j , ζ

i
j ∈ {0, 1}, γ i

i = ζ ii = 0


For (~γ i , ~ζ i ) 6= (0, 0) :

φ(s, ~γ i , ~ζ i ) =
∏
j 6=i

[
γ i
j p

+(sj) + (1− γ i
j )(1− p+(sj))

] [
(ζ ij p

−(sj) + (1− ζ ij )(1− p−(sj))
]
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Generator of the process (Wt , St ,Vt)t>0

∼
Cf (w , s, v) =

∑
i

δ1(v i )β[f (w , s, v − ei )− f (w , s, v)]︸ ︷︷ ︸
B↓f (w,s,v)

+ φ(s,w ,w)
∑
i

αi (w , v)δ0(v i ) (f (w , s − siei , v + ei )− f (w , s, v))︸ ︷︷ ︸
B↑f (w,s,v)

+
N∑
i=1

∂si f (w , s, v)︸ ︷︷ ︸
Btr f (w,s,v)

+
∑
i

αi (w , v)δ0(v i )

 ∑
∼
w∈Gi ,

∼
w 6=w

(f (
∼
w , s − siei , v + ei )− f (w , s, v))φ(s,

∼
w ,w)


︸ ︷︷ ︸

∼
Af (w,s,v)
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Assumption on time scales∑
(~γ i ,~ζ i )6=(0,0) φ(s, ~γ i , ~ζ i )� φ(s, 0, 0)

⇒ (St ,Vt)t>0 change fast compare to (Wt)t>0

First results

Wt fixed, (St ,Vt)t>0 has a unique invariant measure πWt

One can compute the Laplace transform of πWt

Slow fast analysis gives the limit model for the weights :

Cf (w) =

∫
R2
+×{0,1}N

Af (w , s, v)πw (ds, dv)
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Simulations
2 neurons

Analytic

Numerical
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Simulations
2 neurons

Discontinuity of the density
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Simulations
N neurons

STDP curve
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Simulations
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Trajectories
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Perspectives

Study the weights dynamics

Simulations to test with other plasticity rules

Neurons states from discrete to continuous.

Mean field approximations.
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Thank you for your attention
Do you have questions ?
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