Spike-Timing-Dependent-Plasticity (STDP) models or how to understand memory.

Pascal Helson

INRIA Sophia-Antipolis

- Advisor -Etienne Tanré Romain Veltz

15 mai 2017

ĭ

Pascal Helson

Table of content

2 Phenomenological STDP models

3 Our model

Neuron network functioning

Pascal Helson

3

TANKA SAN DARAH DARAH

Synaptic terminals

ndrites

Biophysical Models

Basic cellular processes :

Pathways mediating functional synaptic plasticity :

- Too complex
- \Rightarrow

4

Phenomenological models

Main idea of STDP

• Hebb's law (1949) :

"Neurons that fire together, wire together." [?]

 Spiking-Time Dependent Plasticity (STDP) [Bi and Poo, 1998]

Table of content

2 Phenomenological STDP models

3 Our model

④ Simulations and perspectives

Phenomenological STDP models

- Simplify biophysical models
- Neuron model
- Plasticity model
- Neuron network
- Simulations

Plasticity rule

STDP learning rule

$$\Delta w = F_+(w)G(\Delta t_+) - F_-(w)G(\Delta t_-)$$

STDP deterministic curve (G) :

[Izhikevich and Desai, 2003]

Simulations

[Clopath et al., 2009]

9

TANKA MARKAN

Table of content

Phenomenological STDP models

Our model

4 Simulations and perspectives

Objectives

- Rich enough to reproduce biological phenomena
- Simple enough to be analysed mathematically
- Take into account time scales differences
- Adapted to simulation of not too small networks (10 000 neurons)

11

• Observe global properties of the network

Individual neuron model

- Neurons are either at rest(0) or spiking(1).
- *W_t* ∈ ℝ^N × ℝ^N synaptic weights matrix.
- $V_t \in \{0,1\}^N$ neuron system state.
- Inhomogeneous jump rates :

$$0 \stackrel{\alpha_i'(W_t,V_t)}{\underset{\beta}{\rightleftharpoons}} 1$$

 S : ℝ → ℝ⁺_{*} bounded, positive and nondecreasing, α_m > 0 :

$$\alpha_i'(W_t, V_t) = S\left(\sum_{i=1}^N W_t^{ij} V_t^j\right) + \alpha_m$$

Plasticity rule

• Jump of $\Delta w = \text{cste}$

If the neuron i spikes at t^- , $\forall j \neq i$:

• if $s_t^j < \delta$ then $w_{ij} + \Delta w$ with probability $p^+(s_t^j) = 1_{s_t^j < \delta} A_+ e^{-\frac{s_t^j}{\tau_+}}$;

• if $s_t^j < \delta$ then $w_{ji} - \Delta w$ with probability $p^-(s_t^j) = 1_{s_t^j < \delta} A_- e^{-\frac{s_t^j}{\tau_-}}$.

Markov Process $(W_t, S_t, V_t)_{t>0}$ with $(W_0, S_0, V_0) = (w_0, s_0, v_0)$ and :

- $W_t \in \mathbb{R}^N \times \mathbb{R}^N$ synaptic weight matrix;
- $S_t = (S_t^1, ..., S_t^N) \in \mathbb{R}^N$ inter-arrival time between spikes;
- $V_t \in \{0,1\}^N$ neuron system state.

State space : $E = (\mathbb{R}^N \times \mathbb{R}^N) \times \mathbb{R}^N \times \{0, 1\}^N$

$$G_{i} = \left\{ w + \Delta w \left(\begin{matrix} 0 & \dots & 0 \\ \vdots & 0 & \dots & 0 \\ 0 & \dots & 0 \\ \vdots & 0 & \dots & 0 \\ \vdots & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & 0 & 0 & \dots & 0 \end{matrix} \right), (\vec{\gamma^{i}}, \vec{\zeta^{i}}) \in F^{i} \right\}$$

$$F^{i} = \left\{ (\vec{\gamma^{i}}, \vec{\zeta^{i}}), \vec{\gamma^{i}} = (\gamma^{i}_{1}, \dots, \gamma^{i}_{N}), \vec{\zeta^{i}} = \begin{bmatrix} \zeta^{i}_{1} \\ \vdots \\ \zeta^{i}_{N} \end{bmatrix}, \gamma^{i}_{j}, \zeta^{i}_{j} \in \{0, 1\}, \gamma^{i}_{i} = \zeta^{i}_{i} = 0 \right\}$$
For $(\vec{\gamma^{i}}, \vec{\zeta^{i}}) \neq (0, 0)$:
$$\phi(s, \vec{\gamma^{i}}, \vec{\zeta^{i}}) = \prod_{j \neq i} \left[\gamma^{i}_{j} p^{+}(s_{j}) + (1 - \gamma^{i}_{j})(1 - p^{+}(s_{j})) \right] \left[(\zeta^{i}_{j} p^{-}(s_{j}) + (1 - \zeta^{i}_{j})(1 - p^{-}(s_{j})) \right]$$

Generator of the process $(W_t, S_t, V_t)_{t>0}$

$$\widetilde{C}f(w, s, v) = \underbrace{\sum_{i} \delta_{1}(v^{i})\beta[f(w, s, v - e_{i}) - f(w, s, v)]}_{B_{\downarrow}f(w, s, v)}$$

$$+ \phi(s, w, w) \underbrace{\sum_{i} \alpha_{i}(w, v)\delta_{0}(v^{i}) (f(w, s - s_{i}e_{i}, v + e_{i}) - f(w, s, v))}_{B_{\uparrow}f(w, s, v)}$$

$$+ \underbrace{\sum_{i=1}^{N} \partial_{s_{i}}f(w, s, v)}_{B_{tr}f(w, s, v)}$$

$$+ \underbrace{\sum_{i} \alpha_{i}(w, v)\delta_{0}(v^{i}) \left(\sum_{\widetilde{w} \in G_{i}, \widetilde{w} \neq w} (f(\widetilde{w}, s - s_{i}e_{i}, v + e_{i}) - f(w, s, v))\phi(s, \widetilde{w}, w)\right)}_{\widetilde{A}f(w, s, v)}$$

$$= \underbrace{C_{F}(w, s, v)}_{\widetilde{A}f(w, s, v)}$$

Assumption on time scales

$$\sum_{(\vec{\gamma^i},\vec{\zeta^i})\neq(0,0)}\phi(s,\vec{\gamma^i},\vec{\zeta^i})\ll\phi(s,0,0)$$

 \Rightarrow $(S_t, V_t)_{t>0}$ change fast compare to $(W_t)_{t>0}$

First results

- W_t fixed, $(S_t, V_t)_{t>0}$ has a unique invariant measure π_{W_t}
- One can compute the Laplace transform of π_{W_t}
- Slow fast analysis gives the limit model for the weights :

$$Cf(w) = \int_{\mathbb{R}^2_+ \times \{0,1\}^N} Af(w,s,v) \pi_w(ds,dv)$$

Table of content

Phenomenological STDP models

Our model

Simulations

2 neurons

Analytic

Simulations 2 neurons

Discontinuity of the density

Simulations N neurons

Simulations 2 neurons

Simulations 10 neurons

Perspectives

- Study the weights dynamics
- Simulations to test with other plasticity rules
- Neurons states from discrete to continuous.
- Mean field approximations.

Bi, G.-q. and Poo, M.-m. (1998). Synaptic modifications in cultured hippocampal neurons : dependence on spike timing, synaptic strength, and postsynaptic cell type. *Journal of neuroscience*, 18(24) :10464–10472.

Clopath, C., Büsing, L., Vasilaki, E., and Gerstner, W. (2009). Connectivity reflects coding : A model of voltage-based spike-timing-dependent-plasticity with homeostasis. *Nature*.

Izhikevich, E. M. and Desai, N. S. (2003). Relating stdp to bcm. *Neural computation*, 15(7) :1511–1523.

Morrison, A., Diesmann, M., and Gerstner, W. (2008). Phenomenological models of synaptic plasticity based on spike timing. *Biological Cybernetics*, 98(6) :459–478.

25

• □ ▶ • • □ ▶ • • □ ▶ •

Thank you for your attention Do you have questions?