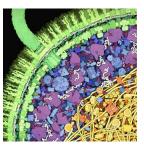
Modèles géométriques pour la prédiction des interactions macro-moléculaires

Geometric models for the prediction of macro-molecular interactions

Frederic.Cazals@inria.fr, ABS http://team.inria.fr/abs



Inside Escherichia coli [D. Goodsell, The machinery of life]

Biological functions involve molecular structure (geometry) + dynamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Outlook

Proteins and macro-molecular machines

Biological functions involve molecular structure (geometry) + dynamics

Protein complexes - physical chemistry 101

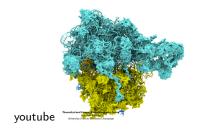
Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Outlook

The machinery of life: protein synthesis by the ribosome

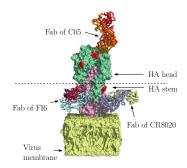
videos-science/video-ribosome-



B-cell biology and antibody - antigen complexes

▶ Influenza

▶ (Broadly) neutralizing antibodies



▶ Core questions on IG-Ag complexes

- Determinants of binding affinity relationship affinity avidity virus entry inhibition
- Role of complementarity determining regions (CDRs)
- Determinants of interaction specificity

Molecular dynamics: first simulation of a protein

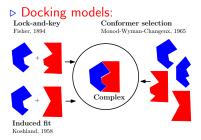
videos-science/video-michaellevitt-first-MD-simulation

About the simulation duration, quoting M. Levitt "Cannot remember, but likely less than 100 picoseconds"

Dynamics...

- ► Can result is (large) conformational changes
- Account for the entropy of the system

Protein interactions: docking, affinity, specificity



- Lock-and-key: Fisher, 1894
- ▶ Induced fit: Koshland, 1958
- Conformer selection, Monod-Wyman-Changeux, 1965

▶ Flexibility matters

- ▶ Key ingredients:
- Geometry: complementarity,conformations, flexibility
- Physics: enthalpy, entropy
- ► Major challenges (cf CAPRI): geometry: large conformational changes physics: entropy based affinity control

The lock and key metaphor is misleading: function is often about dynamics

Proteins and macro-molecular machines

Biological functions involve molecular structure (geometry) + dynamics

Protein complexes - physical chemistry 101

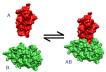
Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Outlook

Binding affinity: dissociation free energy

▶ Protein complexes rock back and forth



▶ Dissociation constant / free energy as a function of concentrations:

$$K_d = [A][B]/[AB]$$

 $\Delta G_d = -RT \ln K_d/c^\circ = \Delta H - T\Delta S.$

- ▶ Binding affinities (thermodynamics):
- random complex: $K_d \sim 10^{-6}$
- high: $K_d \sim 10^{-9}$
- very high: $K_d \sim 10^{-12}$
- extreme: $K_d \sim 10^{-15}$

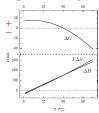
- ▶ Time scales (kinetics):
- short-lived complexes: $10^{-6}s$
- (e.g. enzyme-substrate)
- stable complexes: $10^3 s$ (e.g.
- antibody-antigen)
- permanent complexes: $10^6 s$
- (aggregates)

Binding affinity: thermodynamics

▶ Dissociation constant k_D for $C \leftrightharpoons A + B$:

$$K_d = \frac{[A][B]}{[C]}; \Delta G_d = -RT \ln K_d/c^\circ = \Delta H - T\Delta S. \tag{1}$$

- ▶ The enthalpy entropy compensation:
 - enhanced packing of interface atoms due to attractive forces: $\Delta H < 0$
 - higher packing, restricted atomic motions: $T\Delta S < 0$
- ▶ Marginal stability of proteins and complexes:



- ▶ Large ΔH and $T\Delta S$ compensate
- Crossing of curves difficult to predict
- Marginals stability is key to regulation

Pict. courtesy of Alan Cooper (Thermodynamics of unfolding)

The immune response: affinity maturation

Rigidification of CDR loops limits the entropic penalty upon binding

Antibodies: lineage
CH65
UCA - I-2

 \triangleright Binding affinities: K_d analysis by SPR

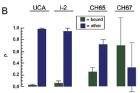
Fab	$K_d(\mu M)$
UCA	118 ± 14
I-2	142 ± 15
CH65	$0.49 \pm .10$
CH67	$\textbf{0.36} \pm \textbf{0.04}$

CH65 \sim CH67; wrt UCA: $\Rightarrow \sim$ 200-fold improvement

▶ But UCA and CH65 have similar binding modes!!!

CH67

▶ Solution: time spent bound conformations – long MD simulations



▶Ref: Harisson et al; PNAS 110, 2013

Force fields: the potential energy of a (bio-)molecular system

 \triangleright The 3*n* – 6 degrees of freedom of a molecule:

- types for atoms (element, bonds)
- covalent: bond lengths, angles
- non covalent: pairwise distances
- solvent model

▶ Potential energy:

$$U_{\text{total}} = E_{\text{bond}} + E_{\text{angle}} + (E_{\text{proper}} + E_{\text{improper}}) + (E_{\text{vdw}} + E_{\text{electro}})$$
 (2)

Ebond: bonds

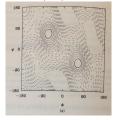
 E_{angle} : covalent angles E_{proper} : proper dihedrals $E_{improper}$: improper dihedrals E_{vdw}: van der Walls E_{electro}: electrostatics

▶ Examples:

- \triangleright AMBER: $S_u = (73, 133, 112, 3, 14, 758)$ 1093 unique parameters
- \triangleright CHARMM: $S_{ii} = (85, 152, 209, 13, 33, 1)$ 493 unique parameters
- MARTINI: $S_u = (16, 4, 0, 2, 21, 3)$ 46 unique parameters

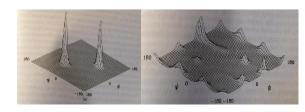
Potential energy landscapes: illustration

▶ Potential energy map: vacuum (PE) versus solvated (PMF):



▶ Corresponding Boltzmann-weighted probability maps:

Solvent stabilizes many more conformers-hydrogen bonding.



⊳Ref: Petitt, Karplus, Chem. Phys. Lett., 121, 1985

Binding affinity: direct calculation

▶ A standard antibody-antigen complex:

- ▶ Model without solvent:
 - ► FAB of antibody \sim 3000 atoms
 - Antigen (lysozyme) ~ 1000 atoms
 - One conformation: 1 point in $\mathbb{R}^{3\times4000}$

 $\triangleright \Delta G_d$ as a multidimensional integral with U the PE and W the solvent PMF:

$$\Delta \textit{G}_{\textit{d}} = -\frac{1}{\beta} \ln \left(\frac{8\pi^2}{c^{\circ}} \frac{\int e^{-\beta(\textit{U}(\textit{r}_{\textit{A}}) + \textit{W}(\textit{r}_{\textit{A}}))} \textit{d}\textit{r}_{\textit{A}} \times \int e^{-\beta(\textit{U}(\textit{r}_{\textit{B}}) + \textit{W}(\textit{r}_{\textit{B}}))} \textit{d}\textit{r}_{\textit{B}}}{\int e^{-\beta(\textit{U}(\textit{r}_{\textit{C}}) + \textit{W}(\textit{r}_{\textit{C}}))} \textit{d}\textit{r}_{\textit{C}}} \right)$$

DRef: Woo ad Roux, PNAS 102 (19), 2005

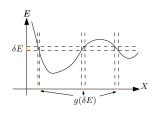
▶Ref: Gilson and Zhou, Ann. Rev. Biophys. Biomol. Struct., 36, 2007

Free energy, density of states, and volume calculations:

why are these questions so difficult?

▶ Partition function and density of states:

$$egin{aligned} Z &= \sum_{x_i: \mathsf{state}} e^{-eta E(x_i)} \ &= \sum_{j: \mathsf{energy level}} g(E_j) e^{-eta E_j} \end{aligned}$$



 $ightharpoonup \ extstyle extsty$

▶ Fundamental issues:

- regions (catchment) basins in conformational space are not polytopes
- Boltzmann's distribution concentrates the mass (probability)...
 how i.e. yielding which kind of entropy based stabilization?

```
▷Ref: Dyer, Freeze, Kannan, J. ACM 38(1), 1991

▷Ref: Lovász, Vempala, J. Comput. Syst. Sci., 71(2), 2006

▷Ref: Lelièvre, Stoltz, Rousset, Free energy computations, World Sc.,
2010
```

Estimating Kd: two routes

- ► Learning: regression
 - Databases of crystal structures + affinity measurements
 - ► Regression models involving relevant variables
- From first principles
 - ► Atomic models of the partners
 - ▶ A force field and a thermodynamic sampling algorithm

Proteins and macro-molecular machines

Biological functions involve molecular structure (geometry) + dynamics

Protein complexes - physical chemistry 101

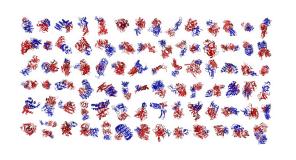
Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Outlook

Protein interactions: the structure affinity benchmark

http://bmm.cancerresearchuk.org/~bmmadmin/Affinity/



Dissociation constant vs affinity

 $\Delta \textit{G}_{\textit{d}} = -\textit{RT} \, \text{ln} \, \textit{K}_{\textit{d}} / c^{\circ}$

NB: in general, bound partners only do not suffice to get accurate predictions

- ▶ 144 protein complexes
 - 17 IG Ag complexes
- ▶ Binding affinity known: ITC, SPR caveat: order of magnitude matter (pH, ion strength, ...)
- ▶ Three crystal structures known: bound complex + 2 unbound partners

Binding affinity estimation as a regression problem

▶ Regression:

- Regression: predicting the value of a <u>continuous</u> (dependent) variable from the values of other (independent) variables.
- $ightharpoonup \Delta G$ is the dependent variable
- Many types of regressors: least squares, regularized least squares, k nearest neighbours, regression trees, multivariate adaptive splines, . . .

▶ Adequate variables: two classes of methods

- Large collections of parameters coding distances, biochemical properties (H-bonds, properties of a.a.), conservation of a.a., etc.
 NB: requires a close monitoring to avoid overfitting.
- ► A small number of them: more precise encoding of enthalpy and entropy related quantities.

Overfitting and sparsity

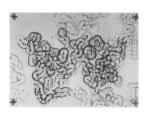
- ► Variable selection and regularization via the LASSO
- ► Sparse model enumeration + cross validation

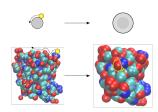
Solvent Accessible Models: the birth

From Lee-Richards, *The interpretation of protein structures: Estimation of static accessibility:*

"The successful elucidation of the structure of a protein by single-crystal diffraction procedures provides a list of atomic co-ordinates whose reliability will vary in different parts of the molecule."

"The topology of the surface of a protein is intimately related to its function; parts of the surface are directly involved in interactions with other molecules; the solvent- protein interface is almost certainly related to the structure of the native molecule; and the chemical reactivity of the various functional groups will depend on their relation to this interface."





⊳Ref: Lee and Richards, JMB, 3 (55), 1971

⊳Ref: Connolly, J. Appl. Crystallography, 1983

⊳Ref: Akkiraju and Edelsbrunner, Discrete Appl. Math., 1996

Solvent Accessible Models: the rise

From Chotia, Structural invariants in protein folding:

"An analysis of 15 protein structures indicates: First, the loss of accessible surface area by monomeric proteins on folding-proportional to hydrophobic energy—is a simple function of molecular weight; second, the proportion of polar groups forming intramolecular hydrogen bonds is constant; and third, protein interiors are closely packed, each residue occupying the same volume as it does in crystals of amino acids."

From Janin, Principles of protein-protein recognition:

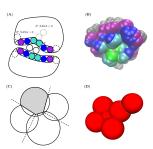
"The formation of the protein–protein interface by the insulin dimer, the trypsin-PTI complex and the $\alpha\beta$ oxyhaemoghbin dimer removes 1,130–1,720 Ų of accessible surface from contact with water. The residues forming the interface are close packed: each occupies the same volume as it does in crystals of amino acids. These results indicate that hydrophobicity is the major factor stabilising protein–protein association, while complementarity plays a selective role in deciding which proteins may associate."

⊳Ref: Chothia, Nature 254, 1975 ⊳Ref: Janin, Nature 256, 1975

Voronoi diagrams in Biology, Geology, Engineering

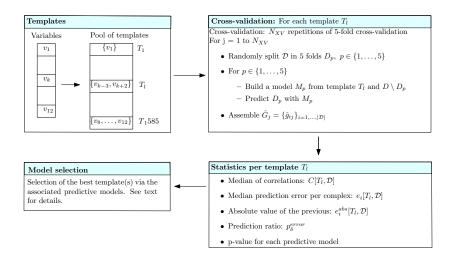
Our parameters: overview

 Our variables: proxys for enthalpy and (vibrational) entropy variations upon binding, the latter based on packing properties



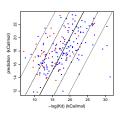
- ▶ Or particular interest
 - ► IVW-IPL: inverse volume-weighted internal path length
 - NIS^{charged}: fraction of charged residues on the non-interacting surface (NIS)
- (A) Binding patch and labeling of interface atoms The non interface atoms (\mathcal{I}^c) are split into those which retain solvent accessibility (SASA > 0, dashed balls), and those which do not (SASA = 0, dotted balls)
 - NB: Buried Surface Area or BSA: area of colored spherical caps
- ▶ (B) Shelling order of an atom: smallest number of atoms traveled to reach an exposed non interface atom, i.e. an atom belonging to \mathcal{I}^c and with SASA > 0 (in grey)
- ▶ (C,D) Atomic packing: via Voronoi volumes

Statistical methodology

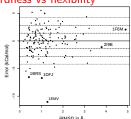


Results on the structure affinity benchmark

Predictions vs measurements



▶ Hardness vs flexibility



- ▶ State-of-the-art binding affinity estimates on the SAB:
- Whole SAB: K_d within one and two OOM in 48% and 79% of cases high resolution (2.5Å): K_d within one and two OOM in 62% and 89%
- Absence of correlation between prediction hardness and protein flexibility

▶ Landmarks:

- 1 OOM (order of magnitude): 1.4 kcal/mol
- -kT per molecule, or RT per mole at room temperature: 0.6 kcal/mol
- ΔG_d , exp. errors ~ 0.3 kcal/mol

Proteins and macro-molecular machines

Biological functions involve molecular structure (geometry) + dynamics

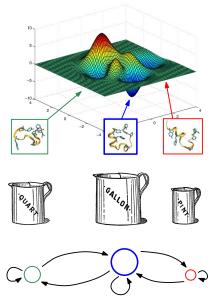
Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Outlook

Emergence of function from Structure – Thermodynamics – Dynamics



Potential Energy Landscape

- large number of local minima
- enthalpic barriers
- entropic barriers

Structure: stable conformations i.e. local minima of the PEL

Thermodynamics: meta-stable conformations i.e. ensemble of conformations easily inter-convertible into one - another.

Dynamics: transitions between meta-stable conformations e.g. Markov state model

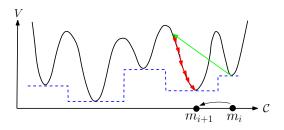
Contributions discussed

- ► (Structure) Sampling potential energy landscapes
- ► (Thermodynamics) Simplifying potential energy landscapes

Exploring Potential Energy Landscapes:

basin hopping

- ▶ Goal: enumerating low energy local minima
- ▶ Basin-hopping and the basin hopping transform
 - Random walk in the space of local minima
 - Requires a move set and an acceptance test (cf Metropolis) and the ability to descend the gradient (quenching) aka energy minizations
- ▶ Limitation: no built-in mechanism to avoid staying trapped

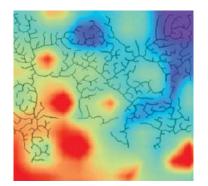


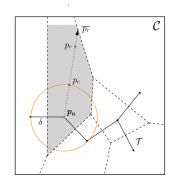
⊳Ref: Li and Scheraga, PNAS, 1987

Exploring Potential Energy Landscapes:

transition based rapidly exploring random trees (T-RRT)

- ▶ Goal: sample basins and transitions
- ▶ Algorithm growing a random tree favoring yet unexplored regions
 - node to be extended selection: Voronoi bias
 - node extension: interpolation + Metropolis criterion (+temperature tuning)
- ▶ Limitation: oblivious to local minima



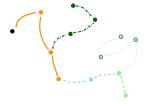


⊳Ref: LaValle, Kuffner, IEEE ICRA 2000

▷Ref: Jaillet, Corcho, Pérez, Cortés, J. Comp. 《Chem; 2011 > ⟨ = ⟩ ⟨ = ⟩ ⟨ (orcho, Pérez, Cortés, J. Comp. (orcho, Pérez, Cortés,

Exploring energy landscapes: a generic approach yielding BH, T-RRT,...

- ▶ Input: potential energy function with million, billion, trillion of local minima
- ▶ Goal: enumerate low energy + persistent local minima
- ▶ Hybrid algorithm: alternate BH and T-RRT extensions



- ▶ Key ingredients:
 - Boosting the exploration of yet-unexplored regions Voronoi bias
 - Managing distances while alleviating concentration phenomena
 - ► Favoring spatial adaptation local Metropolis-Hasting tests

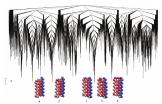
⊳Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015

Protein model BLN69: model and force field

- ▶ Description:
 - Three types of Beads: : hydrophobic(B), hydrophylic(L) and neutral(N)
 - Configuration space of intermediate dimension: 207
 - Challenging: frustrated system
 - Exhaustively studied: DB of $\sim 450k$ critical points (Industry)

$$\begin{split} V_{BLN} &= \frac{1}{2} \cdot K_r \sum_{i=1}^{N-1} (R_{i,i+1} - R_e)^2 + \frac{1}{2} K_0 \sum_{i=1}^{N-2} (\theta_i - \theta_e)^2 + \epsilon \cdot \sum_{i=1}^{N-3} [A_i (1 + \cos \phi_i) + B_i (1 + 3 \cos \phi_i)] \\ &+ 4\epsilon \sum_{i=1}^{N-2} \sum_{j=i+2}^{N} \cdot C_{ij} [(\frac{\sigma}{R_{i,j}})^{12} - D_{ij} (\frac{\sigma}{R_{i,j}})^6] \end{split}$$

▶ Disconnectivity graph: describes merge events between basins



⊳Ref: Honeycutt, Thirumalai, PNAS, 1990

DRef: Oakley, Wales, Johnston, J. Phys. Chem., 2011 → () () () ()

Exploring energy landscapes: performances of Hybrid

- Contributions: enhanced exploration of low lying regions of a complex landscape
 Protocol:
 - Contenders: BH, T-RRT, Hybrid for various parameter values b
 - Count and assess the local minima reported from two reference databases:

BLN69 - min - all: 458,082 minima BLN69-min- E_{-100} : 5932 minima.

Bounding box ∅: all mins

BLN69 - min - all

vs low lying

 $BLN69 - min - E_{-100}$

Median energies

BLN69 - min - all

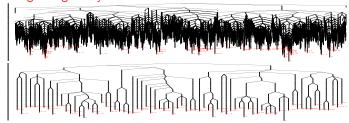
- Assessment:
- Combines critical building blocks:
 minimization, spatial exploration boosting, nearest neighbor searches
- Bridging the gap to thermodynamics

⊳Ref: Oakley et al; J. of Physical Chemistry B; 2011

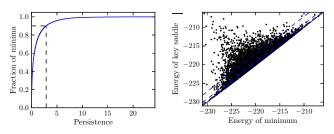
▶Ref: Roth, Dreyfus, Robert, Cazals; J. Comp. Chem.; 2015 > () > ()

Binary Lennard-Jonnes LJ₆₀

▶ Coarse graining the system:



▶ Using the distribution of barriers' heights:



Proteins and macro-molecular machines

Biological functions involve molecular structure (geometry) + dynamics

Protein complexes - physical chemistry 101

Modeling complexes: the machine learning approach

Modeling complexes: ab initio approaches

Outlook

Learning vs ab-initio approaches: different philosophy? No. . . it's rather a matter of *resolution*

▶ Force field development:

 Tuning parameters so as to match experimental data (heat capacity, density, viscosity, T for state changes, surface tension, etc) using (small) organic molecules, then extrapolating to bio-molecules

Affinity predictions:

- Tuning parameters yielding faithful affinity estimates
- ▶ Main difference: microscopic versus macroscopic modeling
- Commonalities: model optimization using regression, cross-validation, Bayesian models, etc

```
⊳Ref: Pande et al, The J. Phys. Chem. letters, 5 (11), 2014

⊳Ref: Horta et al, J. of Chem. Theory and Computation, 12(8), 2016
```


What are we critically missing to enter the era of atomic level engineering?

▶ Fundamental insights into equilibrium thermodynamics require:

- Potential energy: enhanced exploration algorithms akin to shape / model learning
- Free energy: enhanced multicanonical sampling algorithms akin to high dimensional volume calculations
- Dynamics: multi-scale Markov state models

▶ Countless breakthroughs in terms of applications:

- Biology: understanding processes; understanding evolution coding sequences ~ 80 millions in UniProt/TrEMBL structures: 125,000 in the Protein Data Bank
- Medicine: immunology, cancer, neurosciences,...
- Synthetic biology
- Material sciences

Hall of fame

- ▶ More than 20 structural biology-related Nobel Prizes in 50 years:
 - ▶ J. Kendrew and M. Perutz, chemistry 1962: for their studies of the structures of globular proteins
 - F. Crick, J. Watson and M. Wilkins, medecine 1962: for their discoveries concerning the molecular structure of nucleic acids and its significance for information transfer in living material
 - C. Anfinsen, chemistry 1972: for his work on ribonuclease, especially concerning the connection between the amino acid sequence and the biologically active conformation
 - K. Wutricht and J. Fenn, chemistry 2002: for the development of methods for identification and structure analyses of biological macromolecules
 - R. Kornberg, chemistry 2006: for his studies of the molecular basis of eukaryotic transcription
 - V. Ramakrishnan, T. Steitz, A. Yonath, chemistry 2009: for studies of the structure and function of the ribosome
 - ▶ M. Karplus, M. Levitt, A. Warshell, chemistry 2013: for the development of multiscale models for complex chemical systems

Methods: molecular simulation

The Nobel Prize in Chemistry 2013

C Harvard University Martin Karplus

Photo: © S. Fisch Michael Levitt

Photo: Wikimedia Arieh Warshel

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".

Connexions between my talk and Prof. Boissonnat's course

- C1: Modèles géométriques discrets
 - \rightarrow Voronoi models in various guises
- C2: La puissance de l'aléa
 - → Randomized constructions, Monte Carlo algorithms
- C3: Le calcul géométrique
 - \rightarrow Robust geometric predicates and constructions The Computational Geometry Algorithms Library – code and spirit!
- C4. Génération de maillages
 - → The Poisson-Boltzmann equation
- C5: Courbes et surfaces
 - → Surface / shape reconstruction
 - \rightarrow Convergence of regressors
- C6: Espaces de configurations
 - → Conformational spaces: exploration, planning
- C7. Structures de données géométriques
 - → Geometric approximation theory, geometric optimization
- C8: Analyse géométrique et topologique des données
 - → Topological persistence, geometric/topological data analysis

References

F. Cazals, H. Kanhere, and S. Loriot. Computing the volume of union of balls: a certified algorithm. ACM Transactions on Mathematical Software, 2011.

F. Cazals, F. Proust, R. Bahadur, and J. Janin. Revisiting the Voronoi description of protein-protein interfaces. *Protein Science*, 15(9), 2006.

S. Marillet, M-P. Lefranc, P. Boudinot, and F. Cazals. Dissecting interfaces of antibody - antigen complexes... Frontiers in immunology, 34(8), 2017.

S. Marillet, P. Boudinot, and F. Cazals. High resolution crystal structures leverage protein binding affinity predictions. *Proteins: structure, function, and bioinformatics*, 1(84), 2015.

F. Cazals, T. Dreyfus, D. Mazauric, A. Roth, and C.H. Robert. Conformational ensembles and sampled energy landscapes: Analysis and comparison. *J. of Computational Chemistry*, 36(16), 2015.

A. Roth, T. Dreyfus, C.H. Robert, and F. Cazals. Hybridizing rapidly growing random trees ... improved exploration of energy landscapes. *J. of Computational Chemistry*, 37(8), 2016.

J. Carr, D. Mazauric, F. Cazals, and D. J. Wales. Energy landscapes and persistent minima. *The Journal of Chemical Physics*, 144(5), 2016.

F. Cazals and D. Mazauric. Optimal transportation problems with connectivity constraints. Inria Research Report 8991, 2016.

F. Cazals and T. Dreyfus. The Structural Bioinformatics Library: modeling in biomolecular science and beyond. *Bioinformatics*, 1–8, 2016.

The Structural Bioinformatics Library

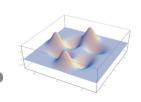
HOME WHAT IS THE SBL? APPLICATIONS GETTING THE SBL . DOCUMENTATION . SBL COMMUNITY F.A.C.

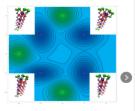
Structural Bioinformatics Library

A C++/Python API for solving structural biology problems.

Conformational analysis:

modeling energy landscapes





Why adopt the SBL?

For Biologists:

- · comprehensive in silico environment providing applications,
- answering complex bio-physical problems.
- in a robust, fast and reproducible way.

For Developers:

- broad C++/python toolbox,
 with modular design and carefull specifications,
- fostering the development of complex applications.

http://sbl.inria.fr

▶Ref: Cazals and Dreyfus; Bioinformatics, 2016

Acknowledgments

- Former Inria director and mentor
 - ► Gilles Kahn (†)
- Colleagues and students
 - Jean-Daniel Boissonnat
 - ▶ Joël Janin
 - Sylvain Pion (software engineering), Dorian Mazauric (algorithms), Juan Cortés (sampling, AlgoSB)
 - Charles Robert (biophysics, AlgoSB), Pierre Boudinot (immunology), Félix Rey (virology)
 - ► PhD students: Sébastien Loriot, Tom Dreyfus, Andrea Roth, Simon Marillet, Augustin Chevallier, Romain Tetley
- Inria ... Algorithms-Biology-Structure is already 10 years old