

Smart Cities or Human Cities Hervé Rivano Agora Citi Lab, Insa Lyon, Inria

The origines of the concept

- J. Laterrasse, 1991
 - Les villes intelligentes : utopie ou réalité de demain ?
 - Main focus on the transportation network
- Bill Clinton, 2005
 - Challenge aimed at Cisco
 - « Connected Urban Development »
- IBM, 2008
 - Smarter Planet, Smarter Cities
 - Sensors, networks, data analytics

The first approach

- Cities = system of systems
 - Complexity to control
 - Metrics to optimize
 - Systems to manage
- Reminder : IBM leader of IT market
 - Mainframe OS
 - Optimization/Data analytics systems
 - => horizontal growth expected
- End siloed structures of cities
 - Department are not enough interacting
 - Data can fuel synergies
 - Analogy with data analytics

Why smart cities ?

- Cities = public marcket and political object
 - IBM vision did not generalize
 - Political, social, economical, industrial issues
 - Evolution of the notion
- Motivation ?
 - World urbanization
 - Over-densification of urban areas
 - Anthropocene challenges
- Societies needs progress
 - Public health and environnement
 - Transport public/private and mobility at large
 - Reactive public services
 - Security, democraty

Individualization of the experience of the city

Why smart cities ?

- Urban densification
 - Collage of urban functions
 - Public health
- Leaving is moving
 - Transports and spreading
 - Way of life correlated to social hierarchy
- Individual urban exprerience
 - Values et ways of leaving
 - Diverse urbanities
 - Digital revolution

- Intelligence in French
 - Anthropomorphic notion
 - Understanding and adaptation
- Smartness
 - Concept from cybernetics
 - Adaptat to modifications of the environnement
 - Notion of resiliency
- Bad french translation pour technical systems
- More relevant for pour the city as a collectivity
 - Including citizens
 - Not limited to techno-centric approaches
 - Grounded on digital cities

Physical – Digital continuum

- Digital revolution and electronics
 - Wealth of measurements and data
 - Fading boundaries ... « phygital »
- Environnement and activity sensors
 - In the public urban space
 - In connected things, vehicles, ...
- RFID tags for logistics and more
- Smartphones : passive tracking
- Social networks : active tracking

- Data redistribution: services, visualizations, open data, etc.

Manyfold and heterogeneous observations of urban phenomenons

An example : the energy grid

- Energy production : expensive infrastructure / slow evolution/ complex control
- Energy consumption : fast variations / individual behaviors
- Data analysis + statistical smoothing
 => Time dependent faring
- Low frequency measurement
 - Peak detection / individual control
- \Rightarrow Device per device switch on/off

In both case : adapt consumption to production

- High frequency measurements +
 - Environmental data
 - Socio-economics and urbanization
- \Rightarrow Precise consumption prediction (AI)

- \Rightarrow Enables smart-grid : adapt production to consumption
- \Rightarrow Need computer science and networking in the infrastructure

Many issues that are not purely technical

- Energy consumption = people and activities Mobility / presence detection Activity inference (even appliance wise)
- Privacy and security issues
- Technology in our intimacy
 Who access what and why ?
 Social acceptance
- But also
 - Easier decentralized production Efficiency / resilience of the grid Hybrid infrastructures Necessary for renewable sources

Mainly simulations + few measurements

Modeling : physicochemical dispersion models (SIRANE, ADMS, etc.)Input: locations of pollution sources, emission rate, meteorological data ...Measurement: reference monitoring stations, accuracy, high cost, low density

Traditional Monitoring Solutions

NO2 Concentrations in Lyon in 2012 (Air-Rhone-Alpes)

Traditional monitoring stations, Paris, France

Context: low cost wireless sensor networks

Emergence of low-cost wireless sensors: flexible & cheaper solution

- $\ensuremath{\textcircled{}^\circ}$ Tiny and low cost
- ③ Better spatial/temporal granularity
- © Lower installation and operational cost
- © Self organization and autonomy, more flexible
- ☺ Less accurate compared to dedicated instruments
- ⊗ Lifetime, need to regularly calibrate electrochemical sensors

Methodology

Many research issues

Mobile sensors :

Smartphones, cars, public transport Understand mobilities, usages

Mobility part of the measurement : Crowdsourcing Sensing correlated to people density

The cellular network as a mobility sensor Macro/Mesoscopic analysis

Understanding of society Urban tissue Urban segregation Mobility and network usage

Adaptative guidance

Crowdsourcing : Google waze / coyote ...

=> Air quality aware path

=> Exposure to publicity

New micro-mobilities

New usage of the public space Regulation and infrastructure issues

Mobility regulation equilibrium Urban mobility planning Commercial interests LOM law

How to arbitrate ?

Static spacial division per mobility

Power relationships between modes

Deviations for confort and security

How to adapt to new usage ?

Data driven route choice understanding

How bike path are chosen ? What are the criteria ?

Real traces

Shortest paths

Clustering of GPS traces

Spatial logics are identified - : diverse behaviors but rational choices (commuting)

Clustering of GPS traces

Shortest path on cluster-wise deformed distances => close to real traces

Clustering of GPS traces + Deep Learning

Associate a cluster to an origin, destination pair O/D -> LSTM Neural Network -> cluster prediction -> shortest path

Next step : dynamic sharing of public space

Agile city adapting to its citizens

- Increase decarbonized mobility
- Provide secure path with limited deviation

Adapt virtualization to urban infrastructures

- Reserve space when needed
- Faster/cheaper than hard infrastructure

Data/IA/Networking needed

- Prediction of usage at micro-scale
- Social acceptance of deviation/waiting

Evolution of domination hierarchy on the road

- Priority to decarbonized mobility
- Political choice in a wider efficiency/sobriety/reliency equilibrium

Learning city

« Invisible » informations are highlighted

- Adaptation of infrastructure to citizens
- Monitor the evolution of social phenomenon

Spatio-temporal datas

- Renewed vision of the territory, of history
- Powerful tools for crossing informations
- Widen the field of possibilities (desirable or not)

Evolution of the relationship to urban space

- Diversity of urbanities
- Urban functions > mobility flows > information flows
- Rebuild political relationships from these flows

Cities learn from/about their citizens Citizens need to build new skill sets

Major issues for society

Wealth of measurements but

- e-panoptical risk « supervise and punish »
- Monitoring/predicting is NOT understanding : human dimension necessary

Citizens understanding of process

- Invidividual freedom issue
- « Digital devide » : culturall cognitive, education related

Ability to participate to public debates

- Privacy
- Ethiqual limits of AI

Democraty needs equality

- Urban segregation
- Evolution of jobs, citizenship, etc.
- Issue for initial and continuing education

